Как научиться быстро считать?

Содержание
  1. Устный счет: техника быстрого счета в уме
  2. Секреты устного счёта
  3. Прибавляем числа 7,8,9
  4. Быстро складываем двузначные числа
  5. Складываем в уме трехзначные числа
  6. Особенности вычитания: приведение к круглым числам
  7. Вычитаем в уме трехзначные числа
  8. Умножить и разделить
  9. Умножаем и делим на 4, 6, 8, 9
  10. Как умножать и делить на 5
  11. Умножение на 9
  12. Счет на пальцах
  13. Устный счёт на автомате
  14. Как выработать навыки быстрого счета? Советы для всех возрастов
  15. Зачем нужно уметь считать в уме
  16. Методики устного счета и упражнения для взрослых
  17. Подготовительный этап – осознание необходимости устного счета
  18. Методики быстрого сложения, вычитания, умножения и деления разных чисел
  19. Советы детям по упражнениям в устном счете
  20. Подготовительный этап
  21. Примеры упражнений для детей
  22. Чему учат в школе и можно ли верить всему
  23. Как научиться быстро считать в уме: тренируем мозг
  24. Тренировка памяти: миф или реальность?
  25. Таблица умножения спасет ситуацию
  26. Книги и отсутствие калькулятора тренируют ваш мозг
  27. Рекомендации для будущих вундеркиндов
  28. Никогда не сдавайтесь перед трудностями
  29. Как быстро считать в уме: приемы устного счета больших чисел
  30. Гаусс и устный счет
  31. Сложение чисел в уме
  32. Вычитание чисел в уме
  33. Умножение чисел в уме
  34. Умножение многозначных чисел на однозначные
  35. Умножение двузначных чисел
  36. Умножение на 11
  37. Возведение в квадрат
  38. Деление чисел в уме
  39. Деление на однозначное число
  40. Деление на двузначное число
  41. Полезные советы
  42. Устный счет: как научиться считать в уме
  43. Тренировка устного счета
  44. Уроки на сайте
  45. Как научиться быстро считать в уме, что для этого нужно сделать
  46. Как быстро вычитать и складывать
  47. Как быстро перемножать
  48. Как быстро делить числа
  49. Техники, связанные с числами, кратными 10

Устный счет: техника быстрого счета в уме

Как научиться быстро считать?

Зачем считать в уме, если решить любую арифметическую задачу можно на калькуляторе. Современная медицина и психология доказывают, что устный счет – это тренаж для серых клеточек. Выполнять такую гимнастику необходимо для развития памяти и математических способностей.

Известно множество приёмов для упрощения вычислений в уме. Все, кто видел знаменитую картину Богданова-Бельского «Устный счёт», всегда удивляются – как крестьянские дети решают такую непростую задачу, как деление суммы из пяти чисел, которые предварительно ещё надо возвести в квадрат?

Оказывается, эти дети – ученики известного педагога-математика Сергея Александровича Рачицкого (он также изображен на картине). Это не вундеркинды – ученики начальных классов деревенской школы XIX века. Но все они уже знают приёмы упрощения арифметических расчетов и выучили таблицу умножения! Поэтому решить такую задачку этим детишкам вполне под силу!

Секреты устного счёта

Существуют приемы устного счета простые алгоритмы, которые желательно довести до автоматизма. После овладения простыми приёмами можно переходить к освоению более сложных.

Прибавляем числа 7,8,9

Для упрощения вычислений числа 7,8,9 сначала надо округлять до 10, а затем вычитать прибавку. К примеру, чтобы прибавить 9 к двузначному числу, надо сначала прибавить 10, а затем вычесть 1 и т.д.

Примеры:

56+7=56+10-3=63

47+8=47+10-2=55

73+9=73+10-1=82

Быстро складываем двузначные числа

Если последняя цифра двузначного числа больше пяти, округляем его в сторону увеличения. Выполняем сложение, из полученной суммы отнимаем «добавку».

Примеры:

54+39=54+40-1=93

26+38=26+40-2=64

Если последняя цифра двузначного числа меньше пяти, то складываем по разрядам: сначала прибавляем десятки, затем – единицы.

Пример:

57+32=57+30+2=89

Если слагаемые поменять местами, то сначала можно округлить число 57 до 60, а потом вычесть из общей суммы 3:

32+57=32+60-3=89

Складываем в уме трехзначные числа

Быстрый счет и сложение трехзначных чисел – это возможно? Да. Для этого надо разобрать трехзначные числа на сотни, десятки, единицы и поочередно их приплюсовать.

Пример:

249+533=(200+500)+(40+30)+(9+3)=782

Особенности вычитания: приведение к круглым числам

Вычитаемые округляем до 10, до 100. Если надо вычесть двузначное число, надо округлить его до 100, вычесть, а затем к остатку прибавить поправку. Это актуально если поправка невелика.

Примеры:

67-9=67-10+1=58

576-88=576-100+12=488

Вычитаем в уме трехзначные числа

Если в свое время был хорошо усвоен состав чисел от 1 до 10, то вычитание можно производить по частям и в указанном порядке: сотни, десятки, единицы.

Пример:

843-596=843-500-90-6=343-90-6=253-6=247 

Умножить и разделить

Моментально умножать и делить в уме? Это возможно, но без знания таблицы умножения не обойтись. Таблица умножения – это золотой ключик к быстрому счету в уме! Она применяется и при умножении, и при делении. Вспомним, что в начальных классах деревенской школы в дореволюционной Смоленской губернии (картина «Устный счет») дети знали продолжение таблицы умножения – с 11 до 19!

Хотя на мой взгляд достаточно знать таблицу от 1 до 10, чтобы мочь перемножать бо´льшие числа. Например:

15*16=15*10+(10*6+5*6)=150+60+30=240

Умножаем и делим на 4, 6, 8, 9

Овладев таблицей умножения на 2 и на 3 до автоматизма, сделать остальные расчеты будет проще простого.

Для умножения и деления двух- и трехзначных чисел применяем простые приёмы:

  • умножить на 4 – это дважды умножить на 2;
  • умножить на 6 – это значит умножить на 2, а потом на 3;
  • умножить на 8 – это трижды умножить на 2;
  • умножить на 9 – это дважды умножить на 3.

Например:

37*4=(37*2)*2=74*2=148;

412*6=(412*2)·3=824·3=2472

Аналогично:

  • разделить на 4 – это дважды разделить на 2;
  • разделить на 6 – это сначала разделить на 2, а потом на 3;
  • разделить на 8 – это трижды разделить на 2;
  • разделить на 9 – это дважды разделить на 3.

Например:

412:4=(412:2):2=206:2=103

312:6=(312:2):3=156:3=52

Как умножать и делить на 5

Число 5 – это половина от 10 (10:2). Поэтому сначала умножаем на 10, затем полученное делим пополам.

Пример:

326*5=(326*10):2=3260:2=1630

Еще проще правило деления на 5. Сначала умножаем на 2, а затем полученное делим на 10.

326:5=(326·2):10=652:10=65,2.

Умножение на 9

Чтобы умножить число на 9, необязательно его дважды умножать на 3. Достаточно его умножить на 10 и вычесть из полученного умножаемое число. Сравним, что быстрее:

37*9=(37*3)*3=111*3=333

или

37*9=37*10 – 37=370-37=333

Также давно замечены частные закономерности, которые значительно упрощают умножение двузначных чисел на 11 или на 101. Так, при умножении на 11, двузначное число как бы раздвигается. Составляющие его цифры остаются по краям, а в центре оказывается их сумма.

Например: 24*11=264. При умножении на 101, достаточно приписать к двузначному числу такое же. 24*101= 2424. Простота и логичность таких примеров вызывает восхищение.

Встречаются такие задачи очень редко – это примеры занимательные, так называемые маленькие хитрости.

Счет на пальцах

Сегодня еще можно встретить много защитников «пальчиковой гимнастики» и методики устного счета на пальцах.

Нас убеждают, что учиться складывать и отнимать, загибая и разгибая пальцы – это очень наглядно и удобно. Диапазон таких вычислений очень ограничен.

Как только расчеты выходят за рамки одной операции возникают трудности: надо осваивать следующий прием. Да и загибать пальцы в эпоху айфонов как-то несолидно.

Например, в защиту «пальчиковой» методики приводится приём умножения на 9. Хитрость приёма такова:

  • Чтобы умножить любое число в пределах первой десятки на 9, надо развернуть ладони к себе.
  • Отсчитывая слева направо, загнуть палец, соответствующий умножаемому числу. К примеру, чтобы умножить 5 на 9, надо загнуть мизинец на левой руке.
  • Оставшееся количество пальцев слева будет соответствовать десяткам, справа – единицам. В нашем примере – 4 пальца слева и 5 справа. Ответ: 45.

Да, действительно, решение быстрое и наглядное! Но это – из области фокусов. Правило действует только при умножении на 9.  А не проще ли, для умножения 5 на 9 выучить таблицу умножения?  Этот фокус забудется, а хорошо выученная таблица умножения останется навсегда.

https://www.youtube.com/watch?v=hEVPZy4xaVQ

Также существует еще множество подобных приемов с применением пальцев для каких-то единичных математических операций, но это актуально пока вы этим пользуетесь и тут же забывается при прекращении применения. Поэтому лучше выучить стандартные алгоритмы, которые останутся на всю жизнь. 

Устный счёт на автомате

  • Во-первых, необходимо хорошо знать состав числа и таблицу умножения.
  • Во-вторых, надо запомнить приемы упрощения расчётов. Как выяснилось, таких математических алгоритмов не так уж много.
  • В-третьих, чтобы приём превратился в удобный навык, надо постоянно проводить краткие «мозговые штурмы» – упражняться в устных вычислениях, используя тот или иной алгоритм.

Тренировки должны быть короткими: решить в уме по 3-4 примера, используя один и тот же приём, затем переходить к следующему. Надо стремиться использовать любую свободную минутку – и полезно, и нескучно. Благодаря простым тренировкам все вычисления со временем будут совершаться молниеносно и без ошибок. Это очень пригодится в жизни и выручит в непростых ситуациях.

Источник: https://myintelligentkids.com/ustnyj-schet-texnika-bystrogo-scheta-v-ume

Как выработать навыки быстрого счета? Советы для всех возрастов

Как научиться быстро считать?

Методы обучения в прошлом веке таким профессиям, как экономист, продавец, товаровед, учитель арифметики начальной школы, стерты из памяти общества, как пережитки советского прошлого. А ведь в них было много полезного.

В частности, такие упражнения, которые активизировали мозговую деятельность, развивали логическое мышление, задействовав оба полушария мозга, чтобы находить оптимальные решения математических задач и уметь считать в уме быстро.

Отдельные элементы методик легли в основу современных курсов ментальной математики и программ обучения быстрого устного счета. Сегодня это роскошь – умение быстро считать в уме, а в далеком прошлом, это было необходимым условием социальной адаптации и выживания.

Зачем нужно уметь считать в уме

Человеческий мозг — орган, который нуждается в постоянной нагрузке, иначе запускается механизм атрофии.

Еще одна особенность в том, что все нейронные процессы в мозге протекают одновременно и взаимосвязано. Так, недостаточная физическая и умственная активность, преобладание статической нагрузки, приводят к рассеянности, невнимательности и раздражительности. В худшем случае может развиться стрессовое состояние, последствия которого трудно предугадать.

Познание окружающего мира и законов общественной жизни, приходит к ребенку по мере взросления и обучения и математика играет в этом не последнюю роль, так как именно она учит строить логические связи, алгоритмы и параллели.

Психологи и опытные педагоги выделяют разные причины, почему ребенку необходимо учиться считать в уме:

  • Повышение концентрации внимания и наблюдательности.
  • Тренировка краткосрочной памяти.
  • Активизация мыслительных процессов и развитие грамотной речи.
  • Умение мыслить вариативно и абстрактно.
  • Тренировка умения распознавать закономерности и аналогии.

Методики устного счета и упражнения для взрослых

Спектр решаемых задач и проблем взрослого человека гораздо шире, чем у ребенка. В ряде профессий и в быту людям ежедневно приходится сталкиваться с задачками математического характера по сто раз на день:

  • Сколько прибыли мне это принесет.
  • Не обсчитали ли меня в магазине.
  • Не завысил ли перекупщик наценку на купленный товар.
  • Дешевле взять кредит с ежемесячной выплатой процента или раз в три месяца.
  • Что лучше – почасовая оплата 150 рублей или ежемесячный оклад 18 000 руб.

Список можно продолжать, но факт необходимости навыков устного счета неоспорим.

Подготовительный этап – осознание необходимости устного счета

Ментальная математика и любая другая методика, призванная научить считать в домашних условиях в уме быстрее и эффективнее, обучает взрослых и детей.

Единственное их отличие – сфера применения знаний. Разработчики курсов ММ стараются подбирать задачки для взрослых таким образом, чтобы они были востребованы в работе.

☞ Пример:

У вас на руках фьючерсный контракт с датой исполнения 1 января 2019 года и вы задались целью просчитать, на какой день недели придется это событие (вдруг пятница). Все операции проводятся с последними двумя цифрами года, в нашем случае – это 19.

Вначале нужно прибавить к 19 четверть, это можно сделать путем простого деления: 19:2 = 8,5, затем 8,5:2 = 4,25. Цифры после запятой отбрасываем. Прибавляем: 19 + 4 = 23. День недели определяется просто: от полученной цифры необходимо отнять самое близкое к ней произведение с цифрой 7. В нашем случае это 7*3 = 21.

Следовательно, 23 – 21 = 2. Дата экспирации фьючерса – второй день или вторник.

Проверить несложно, заглянув в календарь, но если его нет под рукой, такая методика может оказаться полезной, и поднимет вас в глазах окружающих.

Методики быстрого сложения, вычитания, умножения и деления разных чисел

Примеры с разной степенью сложности требуют разного количества времени, хотя с постоянной практикой число затраченных усилий уменьшается.

Сложение и вычитание в ментальной математике имеют тенденцию к упрощению. Сложные и глобальные задачи делятся на более маленькие и простые. Большие числа округляются.

☞ Пример сложения:

17 996 + 2676 + 3592 = 18 000 + 3600 + 2680 – 4 – 8 — 4 = 21600 + 2000 + 600 + 80 – 10 – 6 = 23600 + 600 + 70 – 6 = 24200 + 70 – 6 = 24270 – 6 = 24264.

Поначалу будет трудно удержать в голове такую длинную цепочку и придется мысленно проговаривать все цифры, чтобы не сбиться, но по мере улучшения краткосрочной памяти, процесс будет становиться легче и понятнее.

☞ Пример вычитания:

Для вычитания процесс идентичный. Вначале отнимаем округленное число, а затем прибавляем излишки. Простой пример: 7635 – 5493 = 7635 – 5500 + 7 = 2135 + 7 = 2142

Для умножения и деления существуют свои маленькие хитрости, в том числе и ранее упомянутые в примере с датами. На практике чаще всего встречаются примеры с процентами или пропорциями. Суть их решения также сводится к дроблению и упрощению задачи. Некоторые можно решить просто одним щелчком.

☞ Пример умножения и деления:

Вы положили на депозит 36 000 у. е. под 11% и вам необходимо рассчитать, сколько прибыли он принесет. Секрет вычисления прост – первая и последняя цифра останутся прежними, а середина будет суммой двух крайних чисел. Так 36 * 11 = 3 (3+6) 6= 396 или в нашем случае 396/100% = 3 960 у. е.

В большинстве ментальных методик умножения и деления обязательным и безальтернативным условием является знание таблицы умножения до десяти. Для детей начальной школы программа обучения устному счету будет отличаться.

Советы детям по упражнениям в устном счете

Перед детьми стоят задачи другого порядка. Помимо утомительного заучивания, их ещё заставляют умножать и делить яблоки и помидоры, а если спросить, зачем это делается – учительница в лучшем случае скажет «надо», а ребенок утратит интерес ко всему процессу в целом.

Изменить систему образования за месяц невозможно, а вот помочь ребенку развить навыки устного счета — вполне реально.

Подготовительный этап

Объясните ребенку доступным языком, почему считать в уме – это не только полезно, но еще и интересно.

Если решили заниматься с ним самостоятельно, подберите иллюстрированные материалы из разных источников и составьте график совместных занятий. Необязательно заниматься ежедневно и много часов. Это не пойдет на пользу.

Достаточно посвятить этому двадцать минут три раза в неделю, но в одинаковое время, чтобы ребенок привык.

Примеры упражнений для детей

Начните с интересных задач, чтобы «включиться в игру». Покажите, как можно быстро получить ответ на трудный пример и обогнать всех одноклассников. Развивайте лидерские качества.

☞ Пример:

Воспользуемся правилом умножения двухзначных чисел с одинаковыми первыми цифрами и последними, дающими в сумме «10», чтобы решить пример «44*46». Первую цифру умножаем на ту, которая следует за ней по порядку. Последние цифры также перемножаем: 44 * 46 = (4*5 =20; 4*6 = 24) = 2024.

В школе подобные примеры решаются по старинке, в столбик. Это отнимает кучу времени только на то, чтобы все переписать. Зная таблицу умножения для 4, этот пример можно решить в уме за пару секунд.

Чему учат в школе и можно ли верить всему

Классическая школа в целом скептически относится к методикам ускоренного счета, приводя в пример детей, которые, обученные методам ментальной математики, затем не стремятся логически мыслить по другим предметам, хотят все делать быстро, как привыкли, а не качественно.

Но это связано в большей мере с косностью образовательной программы, чем с реальным положением вещей.

информация

Ментальная математика помогает активизировать мыслительные процессы, но не призывает выбросить тетради, чтобы не считать в столбик, и книги, чтобы не читать.

Методы устного счета хорошо усваиваются ребенком параллельно с методами письменного, которые чаще используются в арифметике начальной школе.

Он видит несколько путей решения задач и чувствует себя более уверенно, по сравнению с одноклассниками.

К сожалению, при проверке контрольной работы для педагога важнее увидеть правильный «как в учебнике» ход решения, а не реальные знания ребенка, но здесь ментальная математика уже бессильна.

Источник: https://4damki.ru/interesnoe/kak-nauchitsya-schitat-v-ume-byistro/

Как научиться быстро считать в уме: тренируем мозг

Как научиться быстро считать?

Чувство числа, минимальные навыки счета – такой же элемент человеческой культуры, как речь и письмо. И если вы легко считаете в уме, то ощущаете иной уровень управления реальностью.

Кроме того, подобное умение развивает мыслительные способности: концентрацию на предметах и вещах, память, внимание к деталям и переключение между потоками познания.

И если вас интересует, как научиться быстро считать в уме,секрет прост: нужно постоянно тренироваться.

Тренировка памяти: миф или реальность?

В математике все просто для тех смышленых личностей, которые щелкают уравнения как семечки. Другим людям сложнее научиться быстро считать в уме. Но нет ничего невозможного, все реально, если много тренироваться.

Существуют следующие математические действия: вычитание, сложение, умножение, деление. Каждое из них имеет свои особенности. Чтобы понять все сложности, нужно один раз разобраться в них, а далее будет все намного проще.

Если вы будете тренироваться по 10 минут каждый день, то через несколько месяцев выйдете на приличный уровеньи познаете истину счета математических чисел.

Многим людям непонятно, как можно варьировать цифрами в уме. Как стать властелином цифр, чтобы это выглядело не глупо и незаметно со стороны? Когда под рукой нет калькулятора, мозг начинает интенсивно обрабатывать информацию, стараясь посчитать необходимые числа в уме.

Но не у всех людей получается добиться желаемых результатов, так как каждый из нас – это индивидуальная личность со своими пределами возможностей.

Если вы хотите понять, как научиться быстро считать в уме,то вам следует изучить всю необходимую информацию, вооружившись ручкой, блокнотом и терпением.

Таблица умножения спасет ситуацию

Мы не будем говорить о тех людях, у которых уровень IQ выше 100, к таким индивидам особые требования. Поговорим о среднестатистическом человеке, который с помощью таблицы умножения может научиться многим манипуляциям.

Итак, как быстро считать в уме без потери здоровья, сил и времени? Ответ прост: вызубрите таблицу умножения! На самом деле здесь нет ничего трудного, главное – иметь напор и терпение, а цифры сами сдадутся перед вашей целью.

Для такого занятного дела нужен будет смышленый напарник, который сможет вас проверить и составит вам компанию в этом требующем терпения процессе. Человек, который знает, как научить считать в уме даже самого ленивого ученика.

Как только вы сможете оперативно умножать, вести устный подсчет будет для вас обыденным делом. К сожалению, волшебных методов не существует. Как быстро вы сможете овладеть новым навыком, зависит только от вас.

Упражнять свой мозг можно не только с помощью таблицы умножения, существует более увлекательное занятие – это чтение книг.

Книги и отсутствие калькулятора тренируют ваш мозг

Чтобы как можно быстрее научиться вести вычислительную деятельность устно, нужно постоянно закалять свой мозг новой информацией.

Но как научиться быстро считать в умеза короткое время? Тренировать память можно только полезными книгами, благодаря которым универсальной будет не только работа вашего мозга, но и, как бонус, – улучшение памяти и получение полезных знаний. Но чтение книг — это не предел тренировок.

Только когда вы сможете забыть о калькуляторе, ваш мозг начнет быстрее перерабатывать информацию. Старайтесь считать в уме при любом случае, продумывайте сложные математические примеры. Но если вам тяжело все это делать самостоятельно, то заручитесь поддержкой профессионала, который быстро вас всему научит.

Рекомендации для будущих вундеркиндов

Вам может быть сложно понять, как научиться быстро считать в уме,когда не дружишь с математикой и нет хорошего учителя, который смог бы облегчить задачу. Но не стоит пасовать перед трудностями. Изучив все необходимые рекомендации, вы с легкостью сможете быстро научиться считать в уме и удивить своих сверстников новыми способностями.

  • Умение работать с большими числами – выход за рамки общего развития.
  • Знание «хитростей» счета поможет вам быстро преодолеть все препятствия.
  • Регулярность важнее интенсивности.
  • Не стоит торопиться, старайтесь поймать свой ритм.
  • Делайте акцент на правильных ответах, а не на скорости запоминания.
  • Проговаривайте действия вслух.
  • Не расстраивайтесь, если у вас не выходит, ведь главное – это начать.

Никогда не сдавайтесь перед трудностями

В ходе тренировки у вас может появиться много вопросов, на которые вы не знаете ответов. Это вас не должно пугать. Ведь вы не можете на первых порах знать, как быстро считатьбез предварительной подготовки. Дорогу осилит только тот, кто всегда идет вперед.

Трудности должны только закалять вас, а не тормозить желание присоединиться к людям с нестандартными возможностями. Даже если вы уже на финишной прямой, возвращайтесь к самому легкому, тренируйте свой мозг, не давайте ему возможности расслабиться.

И помните, чем больше вы будете проговаривать информацию в слух, тем быстрее будете запоминать.

Источник: http://fb.ru/article/313869/kak-nauchitsya-byistro-schitat-v-ume-treniruem-mozg

Как быстро считать в уме: приемы устного счета больших чисел

Как научиться быстро считать?

Образец

Устный счет – занятие, которым в наше время себя утруждает все меньшее количество людей. Гораздо проще достать калькулятор на телефоне и вычислить любой пример.

Но так ли это на самом деле? В этой статье мы представим математические лайфхаки, которые помогут научиться быстро складывать, вычитать, умножать и делить числа в уме. Причем оперируя не единицами и десятками, а  минимум двухзначными и трехзначными числами.

После освоения методов из этой статьи идея лезть в телефон за калькулятором уже не покажется такой хорошей. Ведь можно не тратить время и посчитать все в уме гораздо быстрее, а заодно размять мозги и произвести впечатление на окружающих (противоположного пола).

Итак, добро пожаловать в увлекательный мир вычислений! Мы собрали советы от наших авторов о том, как улучшить устный счет и стать математическим героем и гением. Кстати, если вам интересна математика, вы можете почитать статью “Пределы для чайников” в нашем блоге.

Предупреждаем! Если вы обычный человек, а не вундеркинд, то для развития навыка счета в уме понадобятся тренировки и практика, концентрация внимания и терпение. Сначала все может получаться медленно, но потом дело пойдет на лад, и вы сможете быстро считать в уме любые числа.

Гаусс и устный счет

Карл Фридрих Гаусс

https://www.youtube.com/watch?v=SmKpzImyEvA

Одним из математиков с феноменальной скоростью устного счета был знаменитый Карл Фридрих Гаусс (1777-1855). Да-да, тот самый Гаусс, который придумал нормальное распределение.

По его собственным словам, он научился считать раньше, чем говорить.  Когда Гауссу было 3 года, мальчик взглянул на платежную ведомость своего отца и заявил: «Подсчеты неверны». После того как взрослые все перепроверили, выяснилось, что маленький Гаусс был прав.

В дальнейшем этот математик достиг немалых высот, а его труды до сих пор активно используются в теоретических и прикладных науках. До самой смерти большую часть вычислений Гаусс производил в уме.

Здесь мы не будем заниматься сложными расчетами, а начнем с самого простого.

Сложение чисел в уме

Чтобы научиться складывать в уме большие числа, нужно уметь безошибочно складывать числа до 10. В конечном счете любая сложная задача сводится к выполнению нескольких тривиальных действий.

Чаще всего проблемы и ошибки возникают при сложении чисел с «переходом через 10». При сложении (да и при вычитании) удобно применять технику «опоры на десяток». Что это? Сначала мы мысленно спрашиваем себя, сколько одному из слагаемых не хватает до 10, а потом прибавляем к 10 оставшуюся до второго слагаемого разность.

Например, сложим числа 8 и 6. Чтобы из 8 получить 10, не хватает 2. Затем к 10 останется прибавить 4=6-2. В итоге получаем: 8+6=(8+2)+4=10+4=14

Основная хитрость со сложением больших чисел – разбить их на разрядные части, а потом сложить эти части между собой.

Пусть нам нужно сложить два числа: 356 и 728. Число 356 можно представить как 300+50+6.  Аналогично, 728 будет иметь вид 700+20+8. Теперь складываем:

356+728=(300+700)+(50+20)+(8+6)=1000+70+14=1084

Вычитание чисел в уме

Вычитание чисел тоже будет даваться легко. Но в отличие от сложения, где каждое число разбивается на разрядные части, при вычитании «разбить» нужно только то число, которое мы отнимаем.

Например, сколько будет 528-321? Разбиваем число 321 на разрядные части и получаем: 321=300+20+1.

Теперь считаем: 528-300-20-1=228-20-1=208-1=207

Попробуйте визуализировать процессы сложения и вычитания. В школе всех учили считать в столбик, то есть сверху вниз. Один из способов перестроить мышление и ускорить счет – считать не сверху вниз, а слева направо, разбивая числа на разрядные части.

Умножение чисел в уме

Умножение – это многократное повторение числа. Если нужно умножить 8 на 4, это значит, что число 8 нужно повторить 4 раза.

8*4=8+8+8+8=32

Так как все сложные задачи сводятся к более простым, нужно уметь умножать все однозначные числа. Для этого существует отличный инструмент – таблица умножения. Если вы не знаете эту таблицу на зубок, то мы настоятельно рекомендуем первым делом выучить ее и только потом приниматься за практику устного счета. К тому же учить там, по сути, нечего.

Таблица умножения

Умножение многозначных чисел на однозначные

Сначала потренируйтесь в умножении многозначных чисел на однозначные. Пусть нужно умножить 528 на 6. Разбиваем число 528 на разряды и идем от старшего к младшему. Сначала умножаем, а потом складываем результаты.

528=500+20+8

528*6=500*6+20*6+8*6=3000+120+48=3168

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Умножение двузначных чисел

Здесь тоже нет ничего сложного, только нагрузка на краткосрочную память немного больше.

Перемножим 28 и 32. Для этого сведем всю операцию к умножению на однозначные числа. Представим 32 как 30+2

28*32=28*30+28*2=20*30+8*30+20*2+8*2=600+240+40+16=896

Еще один пример. Умножим 79 на 57. Это значит, что на нужно взять число «79» 57 раз. Разобьем всю операцию на этапы. Сначала умножим 79 на 50, а потом – 79 на 7.

  • 79*50=(70+9)*50=3500+450=3950
  • 79*7=(70+9)*7=490+63=553
  • 3950+553=4503

Умножение на 11

Вот хитрый прием быстрого устного счета, который поможет умножить любое двузначное число на 11 с феноменальной скоростью.

Чтобы умножить двузначное число на 11, две цифры числа складываем друг с другом, и получившуюся сумму вписываем между цифрами исходного числа. Получившееся в итоге трехзначное число – результат умножения исходного числа на 11.

Проверим и умножим 54 на 11.

Возьмите любое двузначное число, умножьте его на 11 и убедитесь сами – эта хитрость работает!

Возведение в квадрат

С помощью другого интересного приема устного счета можно легко и быстро возводить двузначные числа в квадрат. Особенно просто это делать с числами, которые заканчиваются на 5.

Результат начинается с произведения первой цифры числа на следующую за ней по иерархии. То есть, если эту цифру обозначить через n, то следующей за ней по иерархии цифрой будет n+1. Результат заканчивается на квадрат последней цифры, то есть квадрат 5.

Проверим! Возведем в квадрат число 75.

Раньше все считали без калькуляторов

Деление чисел в уме

Осталось разобраться с делением. По сути, это операция, обратная умножению. С делением чисел до 100 никаких проблем вообще возникать не должно – ведь есть таблица умножения, которую вы знаете на зубок.

Деление на однозначное число

При делении многозначных чисел на однозначное необходимо выделить максимально большую часть, которую можно разделить с помощью таблицы умножения.

Например, есть число 6144, которое нужно разделить на 8. Вспоминаем таблицу умножения и понимаем, что на 8 будет делиться число 5600. Представим пример в виде:

6144:8=(5600+544):8=700+544:8

Далее из числа 544 также выделяем максимально большое число, которое делится на 8. Имеем:

544:8=(480+64):8=60+64:8

Осталось разделить 64 на 8 и получить результат, сложив все результаты деления

64:8=8

6144:8=700+60+8=768

Деление на двузначное число

При делении на двузначное число нужно пользоваться правилом последней цифры результата при умножении двух чисел.

При умножении двух многозначных чисел последняя цифра результата умножения всегда совпадает с последней цифрой результата умножения последних цифр этих чисел.

Например, умножим 1325 на 656. По правилу, последняя цифра в получившемся числе будет 0, так как 5*6=30. Действительно, 1325*656=869200.

Теперь, вооружившись этой ценной информацией, рассмотрим деление на двузначное число.

Сколько будет 4424:56?

Первоначально будем пользоваться методом «подгона» и найдем пределы, в которых лежит результат. Нам нужно найти число, которое при умножении на 56 даст 4424. Интуитивно попробуем число 80.

56*80=4480

Значит, искомое число меньше 80 и явно больше 70. Определим его последнюю цифру. Ее произведение на 6 должно заканчиваться цифрой 4.

Согласно таблице умножения, нам подходят результаты 4 и 9. Логично предположить, что результатом деления  может быть либо число 74, либо 79.

Проверяем:

79*56=4424

Готово, решение найдено! Если бы не подошло число 79, второй вариант обязательно оказался бы верным.

https://www.youtube.com/watch?v=LHnFXJnLdKE

Картина Н.П. Богданова-Бельского «Устный счёт. В народной школе С. А. Рачинского»

Полезные советы

В заключение приведем несколько полезных советов, которые помогут быстро научиться устному счету:

  • Не забывайте тренироваться каждый день;
  • не бросайте тренировки, если результат не приходит так быстро, как хотелось бы;
  • скачайте мобильное приложение для устного счета: так вам не придется самостоятельно придумывать себе примеры;
  • почитайте книги по методикам быстрого устного счета. Существуют разные техники устного счета, и вы сможете овладеть той, которая лучше всего подходит именно вам.

Польза устного счета неоспорима. Тренируйтесь, и с каждым днем вы будете считать все быстрее и быстрее. А если вам понадобится помощь в решении более сложных и многоуровневых задач, обращайтесь к специалистам студенческого сервиса за быстрой и квалифицированной помощью!

Источник: https://Zaochnik.ru/blog/kak-bystro-schitat-v-ume-priemy-ustnogo-scheta-bolshix-chisel/

Устный счет: как научиться считать в уме

Как научиться быстро считать?

Устный счёт

Навык устного счета не опирается на один лишь опыт. Это доказывают люди, которые способны считать в уме сложные примеры. В этом курсе вы узнаете про специальные алгоритмы счета в уме.

«Математику уже за то любить следует, что она ум в порядок приводит» – говорил Михаил Ломоносов. Умение считать в уме остается полезным навыком и для современного человека, несмотря на то, что он владеет всевозможными устройствами, способными считать за него.

Возможность обходиться без специальных девайсов и в нужный момент оперативно решить поставленную арифметическую задачу – это не единственное применение данного навыка. Помимо утилитарного назначения, приемы устного счета позволят вам научиться организовывать себя в различных жизненных ситуациях.

Кроме того, умение считать в уме, несомненно, положительно скажется на имидже ваших интеллектуальных способностей и выделит вас среди окружающих «гуманитариев».

Тренировка устного счета

Есть люди, которые умеют совершать несложные арифметические операции в уме. Умножить двузначное число на однозначное, умножать в пределах 20, перемножить два небольших двузначных числа и т.д.

– все эти действия они могут производить в уме и достаточно быстро, быстрее среднего человека. Часто этот навык оправдан необходимостью постоянного практического использования.

Как правило, люди, которые хорошо считают в уме, имеют математическое образование или, по крайней мере, опыт решения многочисленных арифметических задач.

Несомненно, опыт и тренировка играет важнейшую роль в развитии любых способностей. Но навык устного счета не опирается на один лишь опыт.

Это доказывают люди, которые, в отличие от вышеописанных, способны считать в уме гораздо более сложные примеры.

Например, такие люди могут умножать и делить трехзначные числа, совершать сложные арифметические операции, которые не каждый человек и в столбик сможет посчитать.

Что же необходимо знать и уметь обычному человеку, чтобы овладеть такой феноменальной способностью? На сегодняшний день существуют различные методики, помогающие научиться быстро считать в уме. Изучив многие подходы к обучению навыку считать устно, можно выделить 3 основных составляющих данного навыка:

1. Способности. Способность концентрировать внимание и умение удерживать в краткосрочной памяти несколько вещей одновременно. Предрасположенность к математике и логическому мышлению.

2. Алгоритмы. Знание специальных алгоритмов и умение оперативно подобрать нужный, максимально эффективный алгоритм в каждой конкретной ситуации.

3. Тренировка и опыт, значение которых для любого навыка никто не отменял. Постоянные тренировки и постепенное усложнение решаемых задач и упражнения позволят вам улучшить скорость и качество устного счета.

Нужно отметить, что третий фактор имеет ключевое значение. Не обладая необходимым опытом, вы не сможете удивить окружающих быстрым счетом, даже если вы знаете самый удобный алгоритм.

Однако не стоит недооценивать важность первых двух составляющих, поскольку имея в своем арсенале способности и набор нужных алгоритмов, вы сможете «переплюнуть» даже самого опытного «счетовода», при условии, что вы тренировались одинаковое время.

Уроки на сайте

Уроки устного счета, представленные на сайте, направлены именно на развитие этих трех составляющих. В первом уроке рассказано, как развить в себе предрасположенность к математике и арифметике, а также описаны основы счета и логики.

Затем дан ряд уроков по специальным алгоритмам для совершения различных арифметических операций в уме.

И наконец, в данном тренинге представлены дополнительные материалы, помогающие тренировать и развивать умение считать устно, для того, чтобы суметь применить свой талант и свои знания в жизни.

Урок 1. Способности. Упражнения и рекомендации по развитию устного счета, внимания, краткосрочной памяти.

  • Урок 1. Внимание и концентрация при счете в уме

Уроки 2-7. Алгоритмы. Что касается методик, то они даны в следующих уроках, которые разделены на несколько видов:

  • Урок 2. Простые арифметические закономерности
  • Урок 3. Традиционные методы умножения двузначных чисел
  • Урок 4. Частные методики умножения двузначных чисел
  • Урок 5. Опорное число при умножении чисел до 100
  • Урок 6. Умножаем любые числа до 100
  • Урок 7. Возведение в квадрат

Дополнительные материалы. Тренировка. В дополнение к урокам на сайте представлены многочисленные приемы и способы, упражнения, методики, интересные примеры, статьи и видео и многое другое для тренировки и развития вашего быстрого счета в уме.

Уже сейчас вы можете проверить, как быстро вы считаете в уме.

Игра загружается…

Напоминаем, что для полноценной работы сайта вам необходимо включить cookies, javascript и iframe. Если вы ввидите это сообщение в течение долгого времени, значит настройки вашего браузера не позволяют нашему порталу полноценно работать.

Евгений Буянов1 Внимание и концентрация →

1PRO

Источник: https://4brain.ru/schitat-v-ume/

Как научиться быстро считать в уме, что для этого нужно сделать

Как научиться быстро считать?

Очень мало людей умеют быстро считать. Подавляющее большинство взрослых людей подсчитывают необходимые расходы с помощью калькулятора. Из-за того, что большинство людей не умеет считать в уме, их обманывают в магазинах при выдаче сдачи. Сегодня мы будем вас учить быстрому счету в уме. Научившись это делать, вы также сможете обучить своего ребёнка этому навыку.

Несмотря на то что почти все люди считают с калькулятором, находятся редкие кадры, которые способны посчитать в уме. Как правило, на это способен один человек из класса, или даже из параллели. Людей, которые без проблем считают в уме, очень мало. Однако, это не значит, что они гении, и наделены сверхспособностями. Эти люди просто способны делать следующее:

  1. Концентрировать внимание сразу на нескольких вещах. Благодаря этому, они могут с лёгкостью перемножать двузначные и трехзначные числа.
  2. Оперировать с маленькими числами. Большие состоят из маленьких. А, следовательно, достаточно знания таблицы умножения, а дальше дело техники.

Как правило, способность к счету в уме у детей возникает с раннего детства. Если ребёнок умел оперировать с большими числами, намного опережая школьную программу, то в более зрелом возрасте он будет считать не задумываясь.

Для того чтобы научиться с лёгкостью считать в уме, вам необходимо сделать следующее:

  1. Развивать память.
  2. Научиться оперировать с числами от 0 до 9.
  3. Постоянно тренироваться.
  4. Изучить некоторые техники, которые значительно упрощают счёт.

Для развития кратковременной памяти необходимо делать различные упражнения. Самый лучший способ — поставить на стол несколько предметов, и запомнить их. Далее, вы должны отвернуться, а ваш товарищ должен убрать некоторые предметы. После этого, вы должны назвать предметы, которых не хватает. Предметов должно быть не менее десяти, так как такое количество запомнить довольно трудно.

А ещё, можно учить по одному четверостишию в день. Это очень хорошо развивает память, а, соответственно не будет лишним при освоении быстрого счёта в уме.

Научиться оперировать с числами от 0 до 9 — это значит научиться их складывать, умножать, вычитать и делить. Если вы хотите научить делать это своего ребёнка, то в этом вам помогут пальцы. Вычитать и складывать, можно научиться при помощи пальцев рук. Вычитая, необходимо загибать палец, а, прибавляя, — разгибать.

Что касается деления и умножения чисел, то здесь достаточно выучить таблицу умножения. Причём непросто вызубрить, а именно понять. Дети обучаются таким операциям в третьем классе. Так что, здесь ничего сложного нет. Однако люди, которые считают в уме с лёгкостью, в детстве значительно опережали школьную программу по арифметике.

Залог успеха в любом деле — постоянные тренировки. И обучение быстрому счету в уме не является исключением. Если вы хотите поражать своих знакомых, выдавая правильный ответ за мгновение, — тренируйтесь! Со временем, у вас все будет получаться!

Как быстро вычитать и складывать

Сложение и вычитание — одни из самых простых арифметических операций. Научиться быстро их выполнять в уме можно за считаные дни. Сейчас на примерах вы убедитесь, как просто складывать и вычитать.

Пример 1. Нам необходимо из 213 вычесть 79. На первый взгляд, может показаться, что пример действительно сложный, но, на самом деле, это не так. Что такое 79? Это сумма из 70 и 9.

Соответственно, нам необходимо отнять эти числа по отдельности. Сначала мы вычтем 70 из 213, и получим 143. Числа, кратные десяти гораздо проще отнимать и прибавлять. Поэтому мы и разбили 79 на два числа.

После чего, мы вычитаем 9 из 143, и получаем 134. Все элементарно!

Пример 2. Нужно найти сумму 23 и 41. Действуем по такому же алгоритму. Разбиваем 41 на 40 и 1. К 23 прибавляем единицу, и получаем 24. После чего, прибавляем к этому числу 40, и получаем 64. Как вы поняли, для выполнения таких простейших операций необходимо разбивать числа по разрядам. И тогда, всё будет гораздо проще.

Как быстро перемножать

При перемножении чисел рассмотрим 4 случая:

  1. Простое перемножение двух чисел.
  2. Возведение в квадрат.
  3. Умножение на 11.
  4. Взятие процента.

При перемножении двух чисел, необходимо также разбить его на два числа. Пример — нам нужно 43 умножить на 18. Что мы делаем? Мы разбиваем 43 на 40 и 3. После чего, умножаем 18 на каждое из этих чисел, и складываем произведения. Если умножить 18 на 40, то будем 720.

А, умножая 18 на 3, мы получим 54. Складывая результаты умножения, мы получаем 774. Важно понять структуру системы. Если у вас возникли трудности при умножении 40 на 18, то нужно было 18 также разбить на 10 и 8.

А после, перемножив и сложив все, что необходимо, вы получили бы 720.

При возведении в квадрат число умножается само на себя. Считать необходимо по такой же системе, разбивая число на два, и выполняя все дальнейшие операции, о которых мы говорили выше.

При умножении на одиннадцать не нужно ломать голову. Есть один очень простой способ, благодаря которому, на подсчёт ответа у вас уйдут считаные секунды. Пример — необходимо умножить 15 на 11. Что мы делаем? Мы суммируем цифры, из которого состоит число 15. То есть, просуммировав 1 и 5, мы получаем 6. Эту шестёрку нужно записать между единицей и пятёркой. Получаем результат — 165.

Если сумма двух цифр больше 9, например, она равна 12, то нужно единицу, которая находится слева прибавить к старшему разряду, а двойку вписать между этими двумя цифрами. Пример — 39 умножаем на 11. Сумма 3 и 9 равна 12. Единицу мы прибавляем к старшему разряду, и получаем 4. А двойку записываем между 4 и 9. Получаем результат — 429.

Что такое процент? Это одна сотая часть от числа. То есть, если нам нужно взять 30 процентов от какого-то числа, то необходимо умножить его на 30, и разделить на 100. Как умножать числа мы рассказали вам выше, а о том как делить, мы расскажем вам далее.

Как быстро делить числа

Для начала мы вам объясним, как делить маленькие числа. Например, у мамы 3 сына и 6 конфет, необходимо поделить их поровну. Что для этого нужно сделать? Правильно, каждому мальчику необходимо давать по одной конфетке пока они не кончатся. В таком случае каждому достанется по 2 конфеты. Соответственно, если мы разделим 6 на 3, то получим 2.

С большими числами все то же самое. Например, у работодателя выделено 82 тысяч рублей под зарплаты своим сотрудникам. У него в команде пятеро рабочих.

Соответственно, чтобы узнать зарплату каждого из них, необходимо разделить 82 тысячи на 5. Для этого разбиваем 82 тысяч на 80 и 2. Разделив 80 на 5, мы получаем 16. А, разделив, 2 тысячи на 5, мы получаем 400.

Просуммировав результаты, мы получаем результат — зарплата сотрудника равна 16400 рублей.

https://www.youtube.com/watch?v=xANdGqzC-Sk

А что делать, если нацело не делится? Даже людям, которые способны к быстрому счету в уме, довольно трудно вычислить результат, если он будет не целый. В таком случае, если числа двух и более значные, лучше не ломать себе голову и воспользоваться калькулятором. А что делать, если числа небольшие, вам помогут узнать техники, о которых мы поговорим в следующем разделе.

Техники, связанные с числами, кратными 10

Если научиться применять эти техники, то вам будет гораздо проще освоить быстрый счёт в уме. Они нужны для того, чтобы облегчить умножение и деление. Объяснять все на пальцах слишком долго, поэтому мы приведём вам примеры, а вы сами все поймёте.

Пример 1. Нам необходимо разделить 90 тысяч на 5. Для этого нам нужно просто разделить 90 на 5, и после этого приписать к получившемуся результату три нуля.

Пример 2. Нам необходимо разделить 3 на 5. Для этого нужно умножить 3 на 10, потом разделить 30 на пять. А дальше, необходимо разделить шестёрку на 10. Для этого нужно просто поставить перед шестёркой запятую. Получается результат — ноль целых, шесть десятых.

Как вы могли догадаться, если вы делите на 10, то ставите запятую на одну цифру левее. То есть, сколько нулей в числе, кратном 10, на столько цифр влево вы приписываете запятую. Например, если вы делите 5 на тысячу, то результат будет равен 0,005. А при умножении, вы приписываете нули вправо. То есть, при умножении 5 на тысячу, результат будет равно 5000.

Пример 3. Умножение на числа, близкие к 100. То есть, на 98 или 99. Например, вам надо умножить 54 на 98. Для этого, умножьте 54 на 100, и получите 5400. После чего, необходимо вычесть 98 из 100. Мы получаем двойку, которую необходимо умножить на 54. В результаты мы получаем 108. Это число необходимо отнять от 5400. Получается результат, равный 5292.

Теперь вы сможете с лёгкостью освоить быстрый счёт в уме. Главное, — постоянно тренироваться, и через несколько недель, вы сможете поражать своих знакомых удивительной скоростью счёта в уме.

Источник: https://mama.guru/raznoe/kak-nauchitsya-bystro-schitat-v-ume.html

Моя психология
Добавить комментарий